Quality control specialists working within the manufacturing environment, or experts in research and development (R&D) working on product prototypes, need to have a complete picture of any defects that exist in the materials they work with. This is the case whether components are metal, plastic or a composite.
One of the biggest issues they face is that while these defects can be miniscule, and certainly invisible to the naked eye, they can occur on a regular basis and have a significant impact on production quality and efficiency – and indeed on a company's bottom line.
Many of those tasked with checking for defects in materials are hampered by having to rely on relatively basic microscopes or some type of hand-held measurement instrument like Vernier calipers or a micrometer. This sort of equipment is traditionally used to measure larger manufacturing errors once discovered, but the tiniest defects are, by their very nature, far more difficult to spot. To make matters worse, with most microscopes the operator is looking top-down on to a sample, which makes it very difficult to determine whether the problem is a dent, a scratch or a raised section. Being restricted to working in a two-dimensional (2D) plane increases the likelihood of spending large amounts of time checking for material defects, but still not getting the most representative results.
Another issue for inspectors is that the vast majority of microscopes used in defect analysis on materials provide low magnification observation and are unable to store an image in sufficiently high resolution to prevent blurring or pixelation when zooming in. This prevents grain structure in metals from being seen clearly for accurate analysis and makes it difficult to check grain size or carry out particle analysis of the structure when working with composites.
R&D departments and quality control departments in manufacturing settings have also struggled with carrying out detailed analysis on parts that are too large for checking with a standard microscope. Inspecting paint finishes on car doors, for example, can be both a problematic and challenging process.
Finally, working with analog microscopes makes it impossible to share in real-time any data gathered during defect analysis with colleagues or departments on other sites or in other parts of the world. Generating paper reports can be time consuming and they often won't contain the level of detail that's required for in-depth analysis.
The VK-X3000 3D Surface Profiler uses a triple scan approach, where laser confocal scanning, focus variation, and white light interferometry measurement methods are used, so that high-accuracy measurement and analysis can be performed on any target. The VK-X3000 has a resolution of 0.01 nm and can scan areas up to 50 × 50 mm (1.97″ × 1.97″), allowing for measurement of the overall shape of the target while still maintaining high-resolution for analysis of minute surface features. KEYENCE's new 3D Surface Profiler can handle any target, including those with transparent or mirrored surfaces, large height changes, or steep angles.
The VR-6000 optical profilometer performs non-contact measurement to replace stylus profilometers and roughness meters. This 3D profile system captures full surface data across the target with a resolution of 0.1 µm, enabling measurement of features that cannot be performed with probe-type instruments. The new rotational scanning greatly expands the measurement capabilities of the system. True-to-life cross section measurements can be performed with no blind spots. Wall thicknesses and recessed features can be measured without cutting or destroying the target. In addition, the HDR scanning algorithm provides enhanced scanning capabilities for instantly determining the optimal settings to capture high quality data, even on glossy and matte surfaces.
The VL-800 Series 3D Scanner CMM is the first in its lineup to feature 3D-AI, making high-quality 3D data acquisition and analysis effortless for any user. The system intelligently recommends optimal scanning, stitching, and measurement methods based on the shape of the part being analyzed. Additionally, scanned parts can be directly compared to their CAD models for quick visualization of differences, or the 3D scan can be used to streamline reverse engineering processes. From scanning to STEP file output, the VL-800 handles everything automatically, and provides accurate data in a format accessible by any CAD software.